Code: Select all
\documentclass[10pt]{article}
\usepackage{amsmath}
\usepackage{geometry}
\geometry{
left=5mm,
right=5mm,
top=0mm,
bottom=3mm,
bindingoffset=0mm
}
\usepackage{parallel}
\begin{document}
\begin{Parallel}{120mm}{80mm}
\ParallelLText{
\begin{flushleft}
$ |\vec{a}|=\sqrt{\strut\sum_{n=1}^N {a_n}^2} $
$ \hat{\vec{a}} = \frac{1}{|\vec{a}|} \cdot \vec{a} $
$ | \vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}| $
$ \cos{\alpha} = \frac{a_n}{|\vec{a}|} $
$ \cos^2{\alpha} + \cos^2{\beta} + \cos^2{\gamma} = 1 $
$ \vec{a} = \left(a \cos{\alpha} \cdot \vec{e}_x,\hspace{2mm} a \cos{\beta} \cdot \vec{e}_y,\hspace{2mm} a \cos{\gamma} \cdot \vec{e}_z \right) $
Winkel zwischen zwei Geraden: $ | \vec{a} \cdot \vec{b} | = |\vec{a}||\vec{b}|\cdot\cos{\varphi} $
Winkel zwischen Gerade und Ebene: $ | \vec{n} \cdot \vec{a} | = |\vec{n}||\vec{a}|\cdot\sin{\varphi} $
Winkel zwischen zwei Ebenen: $ | \vec{n}_1 \cdot \vec{n}_2 | = |\vec{n}_1||\vec{n}_2|\cdot\cos{\varphi} $
Fl\"acheninhalt eines Parallelogramms: $ A = | \vec{a} \times \vec{b} | $
$ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\cdot\sin{\varphi} $
Spatvolumen: $ V = \left(\vec{a}\times \vec{b}\right) \cdot \vec{c} $
Parallelkomponente: $ \vec{a}_{||\vec{b}} = \left(\vec{a} \cdot \hat{\vec{b}}\right) \cdot \hat{\vec{b}} $
Senkrechtkomponente: $ \vec{a}_{\perp \vec{b}} = \vec{a} - \vec{a}_{||\vec{b}} $
$ \vec{m} = \frac{1}{2} \cdot \left(\vec{a}+\vec{b}\right) $
$ \vec{OM} = \dfrac{1}{2} \cdot \left(\vec{OA}+\vec{OB}\right) $
$ \vec{v} \cdot \left( \vec{a} + \lambda \vec{v} - \vec{p} \right) = 0 $
Zwei windschiefe Geraden: $ \vec{u} \cdot \left( \vec{a} + \lambda \vec{u} - \vec{b} - \mu \vec{v} \right) = 0 ; \vec{v} \cdot \left( \vec{a} + \lambda \vec{u} - \vec{b} - \mu \vec{v} \right) = 0 $
Normalenvektor: $ \vec{n} = \vec{u} \times \vec{v} $
Normalenform: $ \vec{n} \cdot \left( \vec{x} - \vec{p} \right) = 0 \:\:\: \Leftrightarrow \:\:\: n_1 \cdot x + n_2 \cdot y + n_3 \cdot z = n_1 \cdot p_1 + n_2 \cdot p_2 + n_3 \cdot p_3$
Hessesche Normalenform: $ \hat{\vec{n}} \cdot \left( \vec{x} - \vec{p} \right) = 0 $
Abstand Punkt-Ebene: $ d = | \hat{\vec{n}} \cdot \left( \vec{x} - \vec{p} \right) | $
Hessesche Normalenform in Koordinaten: $ \hat{n}_1 x + \hat{n}_2 y + \hat{n}_3 z = d $
Achsenabschnittsform: $ \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \:\:\:\:\:\:\:\:\: a = \frac{d}{\hat{n}_1} \:\:\:\: b = \frac{d}{\hat{n}_2} \:\:\:\: c = \frac{d}{\hat{n}_3} $
$ j^2 = -1, \:\:\:\:\: j^3 = -j, \:\:\:\:\: j^4 = 1, \:\:\:\:\: j^5 = j $
$ e^{j0^\circ} = 1, \:\:\:\:\: e^{j90^\circ} = j, \:\:\:\:\: e^{j180^\circ} = -1, \:\:\:\:\: e^{j270^\circ} = -j $
$ \frac{1}{j} = -j $
$ r = \sqrt{\strut a^2 + b^2} $
$ Im \{ z \} = |z| \cdot \sin \varphi $
$ Re \{ z \} = |z| \cdot \cos \varphi $
$ z = r \left( \cos \varphi + j \sin \varphi \right) = r \: e^{j \varphi} $
$ \left( e^{j \varphi} \right)^* = e^{-j \varphi} $
$ \left|z\right|^{2} = z \cdot z^{*} $
$ z_1 \cdot z_2 = 0 \Rightarrow z_1 \perp z_2$
$ \cos \varphi = \frac{1}{2} \left( e^{j \varphi} + e^{-j \varphi} \right) $
$ \sin \varphi = \frac{1}{2j} \left( e^{j \varphi} - e^{-j \varphi} \right) $
$ \varphi = \arctan \left( \frac{b}{a} \right) $
$ z_0 = \sqrt[n]{r}e^{j\varphi/n} \:\:\:\:\:\: z_k = z_0 \cdot e^{j2\pi k/n}$
Satz von de Moivre: $ \left(\cos \varphi + j \sin \varphi \right)^n = \cos \left( n \cdot \varphi \right) + j \left( \sin n \cdot \varphi \right) $
$ z^{-1} = \frac{z^*}{{|z|}^2} $
$ z_1 + z_2 = \left(a_1 + a_2 \right) + \left(b_1 + b_2 \right)j $
$ z_1 - z_2 = \left(a_1 - a_2 \right) + \left(b_1 - b_2 \right)j $
$ z_1 z_2 = \left(a_1 a_2 - b_1 b_2 \right) + \left(a_1 b_2 + a_2 b_1 \right)j = r_1 r_2 \left( \cos \left(\varphi_1 + \varphi_2 \right) + j \sin \left(\varphi_1 + \varphi_2 \right) \right) $
$ \frac{a_1 + b_1 j}{a_2 + b_2 j} = \frac{a_1 a_2 + b_1 b_2}{{a_2}^2 + {b_2}^2} + \frac{a_2 b_1 - a_1 b_2}{{a_2}^2 + {b_2}^2}j $
$ \frac{1}{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}j $
Symmetrisch: $ A = A^{T} $
Schiefsymmetrisch: $ A = -A^{T} $
Orthogonale Matrix: $ A^{-1} = A^{T} $ bzw. $ A^{T} \cdot A = A^{-1} \cdot A = I $
Lineare Abhaengigkeit: $ det(A) = 0 $
$ det(AB) = det(A) det(B) $
$ det(A^{T}) = det(A) $
Elementares Umformen = Dreiecksform
Komplanar: Vektoren liegen in einer Ebene (lin. abh.), $ det(\vec{a}, \vec{b}, \vec{c}) = 0 $
$rang(A)$: Anzahl linear unabhängiger Vektoren
Regulaer: Spalten sind linear unabhaengig ($ det(A) \neq 0 $)
Singulaer: Keine oder unendliche Loesungen ($ det(A) = 0 $)
eine/unendlich: $ rang(A|B) = rang(A) $
keine: $ rang(A|B) > rang(A) $
Homogenes Gleichungssystem: rechts Nullvektor ($ Ax=0 $)
Spur ($tr(A)$): Summe der Hauptdiagonale (quadr. Matrix)
Eigenwerte: $ det(A - \lambda I) = 0$
Eigenvektoren: $ (A - \lambda_i I) \cdot \vec{v} = 0 $
$ \sum \lambda_i = tr(A)$
$ \prod \lambda_i = det(A) $
$ \rho A = \rho \lambda $
Symmetrische Matrix: Orthogonale Eigenvektoren
Konvergent: Limes existiert
Divergent: Kein Limes, evt. uneigentl. Grenzwert
$ \lim\limits_{k \rightarrow \infty}{\left( a_k \pm b_k\right) } = \lim\limits_{k \rightarrow \infty}{a_k} \pm \lim\limits_{k \rightarrow \infty}{b_k}$
$ \lim\limits_{k \rightarrow \infty}{\left( a_k \cdot b_k\right) } = \left( \lim\limits_{k \rightarrow \infty}{a_k}\right) \cdot \left( \lim\limits_{k \rightarrow \infty}{b_k}\right) $
$ \lim\limits_{k \rightarrow \infty}{ \left( \frac{a_k}{b_k} \right) } = \frac{\lim\limits_{k \rightarrow \infty}{a_k}} {\lim\limits_{k \rightarrow \infty}{b_k}}$
$ \lim\limits_{k \rightarrow \infty}{\sqrt{a_k}} = \sqrt{\lim\limits_{k \rightarrow \infty}{a_k}} $
$ \lim\limits_{k \rightarrow \infty}{\sqrt[k]{k}} = 1 $
Fuer $ a > 0 $ gilt $ \lim\limits_{k \rightarrow \infty}{\sqrt[k]{a}} = 1 $
$ \lim\limits_{k \rightarrow \infty}{\left( 1 + \frac{1}{k} \right)^k } = e $
Summenformel: $ \sum_{k = 1}^{n} k = \frac{n \cdot \left( n + 1 \right) }{2} = \frac{n^2 + n}{2} $
Unendliche Reihen: $ \sum_{k = 0}^{\infty} q^k = \frac{1}{1 - q} $
Endliche Reihen: $ \sum_{k = 0}^{n} q^k = \frac{q^{n + 1} - 1}{q - 1} \:\:\: \left( q \leq 1 \right) $
Geometrische Reihe: konv. abs. fuer $ |q|< 1 $, sonst div.
Harmonische Reihe: divergent
Alternierende harm. Reihe: konvergent
\end{flushleft}
}
\ParallelRText{
\begin{flushleft}
\begin{tabular}{lcr}
$ \sin 0^\circ \:\: = $ & $ 0 $ & $ = \cos 90^\circ $ \\
$ \sin 30^\circ = $ & $ \frac{1}{2} $ & $ = \cos 60^\circ $ \\
$ \sin 45^\circ = $ & $ \frac{1}{2} \sqrt{2} $ & $ = \cos 45^\circ $ \\
$ \sin 60^\circ = $ & $ \frac{1}{2} \sqrt{3} $ & $ = \cos 30^\circ $ \\
$ \sin 90^\circ = $ & $ 1 $ & $ = \cos 0^\circ \:\: $ \\
\end{tabular}
----- \\
\begin{tabular}{lcr}
$ \tan 0^\circ \:\:\:\: = 0 $ \\
$ \tan 30^\circ \:\: = \frac{1}{\sqrt{3}} $ \\
$ \tan 45^\circ \:\: = 1 $ \\
$ \tan 60^\circ \:\: = \sqrt{3} $ \\
\end{tabular}
----- \\
\begin{tabular}{lcr}
$ e^{j0^\circ \:\:} = $ & $ 1 $ \\
$ e^{j30^\circ} = $ & $ \frac{1}{2} \left( \sqrt{3} + j \right) $ \\
$ e^{j45^\circ} = $ & $ \frac{1}{2} \sqrt{2} \left( 1 + j \right) $ \\
$ e^{j60^\circ} = $ & $ \frac{1}{2} \left( 1 + \sqrt{3}j \right) $ \\
$ e^{j90^\circ} = $ & $ j $ \\
\end{tabular}
\end{flushleft}
}
\end{Parallel}
\end{document}