Thanks!
Code: Select all
\documentclass[a4paper,12pt,twoside]{book}
\usepackage{amsmath,amssymb,amsfonts,geometry} % Typical maths resource packages
\usepackage{xcolor} % For creating coloured text and background
\usepackage{hyperref} % For creating hyperlinks in cross references
\usepackage{graphicx}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{teo}{Theorem}[section]
\usepackage{fancyhdr}
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{\chaptername \ \thechapter \ \ #1}}{}}
\fancyhf{}%clear all header and footer fields
\fancyhead[LO]{\nouppercase{\rightmark}}
\fancyhead[RE]{\nouppercase{\leftmark}}
\fancyhead[RO,LE]{\thepage}
\def\chem#1#2{ {{\scriptscriptstyle#1\atop\longrightarrow}\atop{\longleftarrow\atop \scriptscriptstyle#2}} }
\begin{document}
.
.
.
\subsection{Linearization stability parallel flow (Rayleigh equation)}
.
.
.
Now, seek the solution with form $ \overline{\psi}=\phi(y)e^{i\alpha(x-ct)} $ where $ \alpha $ and c are constants (c is complex in general) so continue derivation
\begin{align*}
\\-\dfrac{\partial}{\partial t}{[-\alpha^{2}\phi(y)+\phi_{yy}(y)]e^{{\textrm{i}}\alpha(x-ct)}}+U(y)\dfrac{\partial}{\partial x}{[-\alpha^{2}\phi(y)+\phi_{yy}(y)e^{{\textrm{i}}\alpha(x-ct)}]}+U_{yy}(y)\dfrac{\partial}{\partial x}[\phi(y)e^{{\textrm{i}}\alpha(x-ct)}]&=0,\\
\end{align*}
\begin{align*}
\\ \alpha c{\textrm{i}}[\phi_{yy}(y)-\alpha^{2}\phi(y)]e^{{\textrm{i}}\alpha(x-ct)}-\alpha {\textrm{i}}U(y)[\phi_{yy}(y)-\alpha^{2}\phi(y)]e^{{\textrm{i}}\alpha(x-ct)}+\alpha {\textrm{i}}U_{yy} (y)\phi(y)e^{{\textrm{i}}\alpha(x-ct)}&=0,\\
\end{align*}
\begin{align*}
\\(c-U(y))(\phi_{yy}(y)-\alpha^{2}\phi(y))+U_{yy}(y)\phi(y)&=0,\\
\end{align*}
\begin{align*}
\\\phi_{yy}(y)-\alpha^{2}\phi(y)+\frac{U_{yy}(y)}{c-U(y)}\phi(y)&=0.\\
\end{align*}
\begin{align*}
\therefore \ \phi_{yy}(y)-\alpha^{2}\phi(y)-\frac{U_{yy}(y)}{U(y)-c}\phi(y)&=0 \\
\end{align*}
With boundary condition it can be written as
\[\left\{
\begin{array}{l l}
\phi''(y)-\alpha^{2}\phi(y)-\dfrac{U''(y)}{U(y)-c}\phi(y) \\ \\
\phi(0)=\phi(h)=1\\
\end{array} \right. \]
Which is Rayleigh's stability equation where h is usually given as 1.\\